Տասնորդական կոտորակների համեմատումը
\(0,54\) թվին աջից ավելացնենք զրո: \(0,532\) և \(0,540\) տասնորդական կոտորակները, որոնցում ստորակետից հետո կան հավասար քանակով թվանշաններ:
Տասնորդական կոտորակները գրենք սովորական կոտորակների տեսքով:
Կոտորակների հայտարարները հավասար են:
Նույն հայտարարներով երկու սովորական կոտորակներից մեծ է ավելի մեծ համարիչ ունեցող կոտորակը:
Քանի որ \(532 < 540\), ապա , և ուրեմն՝ \(0,532 < 0,540 \) կամ՝ \(0,532 < 0,54\)
Երկու տասնորդական կոտորակները համեմատելու համար պետք է սկզբում, կոտորակներից մեկին աջից զրոներ կցագրելով, հավասարեցնել նրանց տասնորդական թվանշանների քանակները, ապա անտեսելով ստորակետները, համեմատել ստացված բնական թվերը:
Տասնորդական կոտորակները կարելի է համեմատել նաև կոտորակների դիրքային կարգերի թվանշանները համեմատելու միջոցով:
\(15,73\) և \(4,889\) կոտորակներում բավական է համեմատել նրանց ամբողջ մասերը: Քանի որ, \(15 > 4\), ապա \(15,73 > 4,889\): Կոտորակային մասերը դեր չխաղացին:
\(531,437\) և \(531,537\) կոտորակների ամբողջ մասերը հավասար են: Այդ դեպքում պետք է համեմատել դրանց կոտորակային մասերը՝ \(531,437 < 531,537\)
1) Տարբեր ամբողջ մասերով երկու դրական տասնորդական կոտորակներից ավելի մեծ է այն կոտորակը, որի ամբողջ մասն ավելի մեծ է:
2) Հավասար ամբողջ մասերով երկու դրական տասնորդական կոտորակներից ավելի մեծ է այն կոտորակը, որի կոտորակային մասն ավելի մեծ է:
Ռացիոնալ թվերի համեմատման կանոններից բխում է, որ՝
1) երկու բացասական տասնորդական կոտորակներից ավելի մեծ է այն կոտորակը, որի բացարձակ արժեքն ավելի փոքր է:
2) Ցանկացած դրական տասնորդական կոտորակ ավելի մեծ է ցանկացած բացասական տասնորդական կոտորակից:
Աղբյուրները
Բ. Նահապետյան, Ա. Աբրահամյան, Մաթեմատիկա 6-րդ դասարան, ՄԱՆՄԱՐ, 2012: