Արտագծյալ շրջանագիծ
Եթե բազմանկյան բոլոր գագաթները գտնվում են շրջանագծի վրա, ապա շրջանագիծը կոչվում է այդ բազմանկյան արտագծյալ շրջանագիծ:
Շրջանագծի կենտրոնը հավասարահեռ է բազմանկյան բոլոր գագաթներից, հետևաբար այն գտնվում է բազմանկյան կողմերի միջնուղղահայացների հատման կետում:
Ոչ բոլոր բազմանկյուններն ունեն արտագծյալ շրջանագիծ՝ հաճախ բազմանկյան համար գոյություն չի ունենում այնպիսի շրջանագիծ, որը կանցնի բազմանկյան բոլոր գագաթներով:
Քանի որ եռանկյան կողմերի միջնուղղահայացները հատվում են նույն կետում, ապա ցանկացած եռանկյուն ունի արտագծյալ շրջանագիծ:
Սուրանկյուն եռանկյան դեպքում, արտագծյալ շրջանագծի կենտրոնը գտնվում է եռանկյան ներսում (տես ներքևի նկարը):
Ուղղանկյուն եռանկյան դեպքում, արտագծյալ շրջանագծի կենտրոնը գտնվում է եռանկյան ներքնաձիգի վրա (տես ներքևի նկարը):
Բութանկյուն եռանկյան դեպքում, արտագծյալ շրջանագծի կենտրոնը գտնվում է եռանկյունից դուրս (տես ներքևի նկարը):
Ներգծյալ շրջանագիծ
Եթե բազմանկյան բոլոր կողմերը շոշափում են շրջանագիծը, ապա շրջանագիծը կոչվում է այդ բազմանկյան ներգծյալ շրջանագիծ:
Քանի որ եռանկյան անկյունների կիսորդները հատվում են նույն կետում, ապա ցանկացած եռանկյուն ունի ներգծյալ շրջանագիծ:
Քանի որ, ցանկացած եռանկյան անկյունների կիսորդները հատվում են եռանկյան ներսում, ապա ներգծյալ շրջանագծի կենտրոնը միշտ գտնվում է եռանկյան ներսում:
Բանաձևեր
Հավասարակողմ եռանկյուն
Հավասարակողմ եռանկյան կողմերի միջնուղղահայացները և անկյունների կիսորդները հատվում են միևնույն կետում:
Ուշադրություն
Հետևաբար, հավասարակողմ եռանկյան արտագծյալ և ներգծյալ շրջանագծերի կենտրոնները համընկնում են:
Արտագծյալ շրջանագծի շառավիղը
կամ , որտեղ \(h\) -ը եռանկյան բարձրությունն է, իսկ \(a\) -ն՝ կողմը:
Ներգծյալ շրջանագծի շառավիղը
կամ որտեղ \(h\) -ը եռանկյան բարձրությունն է, իսկ \(a\) -ն՝ կողմը:
Հավասարակողմ եռանկյան բարձրությունը և կողմը կապված են հետևյալ բանաձևով՝
Ուղղանկյուն եռանկյուն
Արտագծյալ շրջանագծի շառավիղը
, որտեղ \(c\) -ն ներքնաձիգն է:
Ներգծյալ շրջանագծի շառավիղը
, որտեղ \(p\) -ն կիսապարագիծն է:
Կամայական եռանկյուն
Արտագծյալ շրջանագծի շառավիղը
Ներգծյալ շրջանագծի շառավիղը
, որտեղ \(p\) -ն կիսապարագիծն է:
Աղբյուրները
Լ.Ս. Աթանասյան, Վ.Ֆ. Բուտուզով, Ս.Բ. Կադոմցև, Է.Գ. Պոզնյակ, Ի.Ի..Յուդինա: Երկրաչափություն 8-րդ դասարան, Երևան, "Զանգակ 97", 2007