![](https://www.imdproc.am/upload/yp2/nkar.png)
![](https://www.imdproc.am/upload/yp2/lala1.png)
![](https://www.imdproc.am/upload/yp2/lala2.png)
![](https://www.imdproc.am/upload/yp2/text11.png)
![](https://www.imdproc.am/upload/yp2/text12.png)
![](https://www.imdproc.am/upload/yp2/text13.png)
![](https://www.imdproc.am/upload/yp2/text0.png)
![](https://www.imdproc.am/upload/yp2/zang1.png)
![](https://www.imdproc.am/upload/yp2/zang2.png)
![](https://www.imdproc.am/upload/yp2/check.png)
![](https://www.imdproc.am/upload/yp2/text21.png)
![](https://www.imdproc.am/upload/yp2/check.png)
![](https://www.imdproc.am/upload/yp2/text22.png)
![](https://www.imdproc.am/upload/yp2/check.png)
![](https://www.imdproc.am/upload/yp2/text23.png)
![](https://www.imdproc.am/upload/yp2/logo.png)
![](https://www.imdproc.am/upload/yp2/hamar.png)
Հերոնի բանաձևը
Եթե հայտնի են եռանկյան բոլոր երեք կողմերը, ապա հարմար է օգտագործել Հերոնի բանաձևը՝
Օրինակ
1. Հաշվենք \(17\) սմ, \(39\) սմ, \(44\) սմ կողմերով եռանկյան մակերեսը:
Լուծում: Կիրառենք Հերոնի բանաձևը:
Օրինակ
2. Հաշվենք \(15\) սմ, \(13\) սմ, \(4\) սմ կողմերով եռանկյան փոքր բարձրությունը:
Լուծում: Կիրառենք եռանկյան մակերեսի երկու բանաձևեր՝
և
Փոքր բարձրությունը տարված է մեծ կողմին, ուրեմն՝ \(a =\)\(15\) սմ:
Կազմում ենք հավասարումը՝
Մասնավոր դեպք: \(a\) կողմով հավասարակողմ եռանկյան մակերեսը հաշվում են հետևյալ բանաձևով՝
Աղբյուրները
Լ.Ս. Աթանասյան, Վ.Ֆ. Բուտուզով, Ս.Բ. Կադոմցև, Է.Հ. Պոզնյակ, Ի.Ի..Յուդինա: Երկրաչափություն 9-րդ դասարան, Երևան, «Զանգակ», 2013